Winwick CE Primary School

Calculation Policy

In God's love, aspire and achieve to be the best' 1 Corinthians 16:14 'Do everything in love.'

EYFS Addition

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

	ADDITION			
	Mental strategies	Written methods	Vocabulary	Models, Images and resources
	5 + 1 = 6 tracks can be introduced to count up on ad to find one m 1 more than 4? 1 more than 13?	ore 1 2 3 4 5 6 :		
Number	lines can then be used alongside number tracks and pract	ical apparatus to solve addition calculations and word problems. $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$ $5 + 3 \qquad = 8$		
	will need opportunities to look at and talk about the dif ntations.	ferent models and images as they move between		

Year 1	Add a pair of single-digit numbers, including crossing 10, e.g. 5 + 8	Solve simple one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems.	Add Total	100 square Number lines
	Add one-digit number to a teens number, e.g. 13 + 5	Explain methods & reasoning	More	Number tracks
	Add one-digit to 10, and a multiple of 10 to a one-digit number, e.g. 10 + 7, 7 + 30	Use the 100 square to add 10 to a single digit number	Tens	Bead strings (for
	Add one-digit and two-digit numbers to 20 (9 + 9, 18 - 9), including zero		Ones	children) Bead bar
	Add near doubles, e.g. 6 + 7	Record addition by:		Tens Frame
	Represent and use number bonds to 20	- showing jumps on prepared number lines		
	(and 2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19)	- recording number sentences		
		erg 6 + 5 = 11		
				Numicon Straws
		6 7 8 9 10 11		
		Read, write and interpret mathematical statements involving addition (+) and equals (=) signs Bar Models		

	numbers using concrete objects, pictorial representations,	Count or add in multiples of 10 using 100 square or number line		100 square
Year 2	 and mentally, including: add a single-digit number to a two-digit number, 	+10 +10	Add	Number lines
	 including crossing the tens boundary, e.g. 23 + 5,, then 28 + 5 add a multiple of 10 to any two-digit number, e.g. 27 + 60 add two two-digit numbers adding three one-digit numbers add 9, 19, 29, or 11, 21, 31, add near doubles, e.g. 13 + 14, 39 + 40 	23 33 43 Add 9 or 11 by adding 10 and adjusting by Add by using partitioning of tens and ones	Sum More than Total Altogether Plus	Partly marked number lines Number tracks Bead strings Arrow cards Dienes apparatus
	Recall number bonds to 20 fluently and derive and use related facts to 100	Solve simple one-step problems with addition: using concrete objects and pictorial representations, involving numbers, quantities and measures	Partition into tens and ones	Numicon
	Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	Recognise and use the inverse relationship between addition and subtraction to check calculations and missing number problems. Check by adding numbers in a different order e.g. $5 + 2 + 1 = 1 + 5 + 2 = 1 + 2 + 5$.		
		Begin recording addition in columns to support place value and prepare for efficient written methods. Use of bar models		
Year 3	Use number bonds to 20 and links to bonds of multiples of 10 to 100 , complements to 100 e.g. 45 + 55 = 100	Add numbers with up to three digits, using the efficient written methods. Use understanding of place value and partitioning.	Partition	Arrow cards
	Practise solving varied addition questions mentally with two-digit numbers, the answers could exceed 100.	Use of bar models Estimate the answer to a calculation and use inverse operations to check	Tens, ones, digit	100 square Dienes apparatus
	Add numbers mentally, including:	Solve problems, including missing number problems, using number facts,	Empty number line	Numicon

	Practise mental methods with increasingly large numbers to	Compact columnar addition	Partition	
Year 4	aid fluency Add any pair of two-digit numbers, including crossing the tens and 100 boundary, e.g. 47 + 58 add a near multiple of 10, e.g. 56 + 29	Add numbers with up to 4 digits using the efficient written column method Practise with increasingly large numbers to aid fluency.	Place value Carry 10, carry 100	Arrow cards Dienes apparatus
	Add near doubles of two-digit numbers, e.g. 38 + 37 Understand addition as inverse of subtraction	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Two digit, three digit Crossing tens boundary Inverse	
		Estimate and use inverse operations to check answers Solve addition two-step problems in contexts, deciding which operations and methods to use and why. Include problems involving decimals in money or measures e.g. 6.3m + 3.7m = 10m Use of bar models		

Year 5	Add numbers mentally with increasingly large numbers to aid fluency e.g. 12 462 + 2 300 = 14 762 Use rounding to check answers and determine, levels of accuracy Add a pair of two or three-digit multiples of 10, e.g. 30 + 80, 35 +36 and 350+ 360 Add a near multiple of 10 or 100 to any two-digit or three- digit number, e.g. 235 + 198 Add pairs of decimal fractions each with units and tenths, e.g. 5.7 + 2.5, 6.3 + 4.8	Add whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods to aid fluency $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Decimal point Carry one, carry 10, carry 100
Year 6	Calculate mentally with increasingly large numbers and more complex calculations. Addition facts for multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. 650 + 2 = 930, 2 + 1.4 = 2.5	Practise addition for larger numbers, using the efficient written methods of columnar addition. Use of bar models.	

EYFS Subtraction

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Guidance/ Models and Images	Key Vocabulary
Children begin with mostly pictorial representations	Games and songs can be a useful way to begin using
xxx xx	vocabulary involved in subtraction
Concrete apparatus is used to relate subtraction to taking away and counting how many objects are left. $5 - 1 = 4$	e.g.Five Little men in a flying saucer
S – I =4 Concrete apparatus models the subtraction of 2 objects from a set of 5.	 Take (away) Leave How many are left/left
Construct number sentences verbally or using cards to go with practical activities.	 over? How many have gone? One less, two less ten
Children are encouraged to read number sentences aloud in different ways "five subtract one leaves four" "four is equal to five subtract one" subtract one"	 less How many fewer is than? Difference between
Children make a record in pictures, words or symbols of subtraction activities carried out.	Is the same as
Solve simple problems using fingers	

SUBTRACTION					
	Mental strategies	Written methods	Vocabulary	Models, Images and resources	
	Subtract a pair of numbers, including crossing 10, e.g. 15 -	Count back orally or use a marked or partly marked number line to find the	Count back	100 square	
Year 1	8	difference by counting on in ones 9 - 4 = 5 (counting back)	Count on	Number lines	
	Subtract a single-digit number	and when secure	Less than	Number tracks	
	from a teens number e.g. 13 - 5	9 – 4 = 5 (counting on)	Difference	Bead strings	
	from 10, beginning to subtract a multiple of 10 from a two-digit		Take away	Numicon	
	number, e.g. 10 - 7, 67 -30	←	subtract		

	Subtract one-digit and two-digit numbers to 20 (9 + 9, 18 - 9), including zero Represent and use number bonds to 20 (and 2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19)	Solve simple one-step problems and missing number problems involving subtraction using practical equipment , concrete objects and pictorial representations, Explain methods & reasoning Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs		
Year 2	 Subtract numbers using concrete objects, pictorial representations, and mentally, including: subtract a single-digit number from a two-digit number, including crossing tens boundary, e.g. 26 - 5, then 22 - 5 subtract a multiple of 10 from any two-digit number, e.g. 67 - 20 subtract two two-digit numbers subtract 9, 19, 29, or 11, 21, 31 Recall number bonds to 20 fluently and derive and use related facts to 100 (and 11,12,13,14, 15,16,17, 18,19) Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot 	Understand when it is sensible to count back (take away) and when to count on (find the difference) Use empty number lines to bridge through multiple of 10 22-5=17(counting back) -3 $-2-3$ -2 $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ $-2-3$ -2 $-2-3$ -2 -3 $-2-3$ -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2	Count back Count on Subtract take away Less than Minus Decrease Difference	100 square Number lines Partly marked number lines Number tracks Bead strings Arrow cards Dienes apparatus Numicon

Year 3	Recall number bonds to 20 and links to bonds of multiples of 10 to 100 , complements to 100 e.g. 100 – 55 = 45	Solve problems, including missing number problems, using number facts, place value, and more complex subtraction	Subtraction Partition	Partly marked number lines
	Practise solving varied subtraction questions mentally	Subtract with up to three digits, using the efficient written methods of columnar subtraction. Use understanding of place value and partitioning	Tens, ones, digit	Empty number line
	with two-digit numbers, the answers could exceed 100.	Estimate answers calculations and use inverse operations to check	Empty	Arrow card
	Subtract numbers mentally, including: a three-digit number and ones	Use partitioning to subtract TU - TU, developing to HTU - TU 67 - 24 = 60 - 20 + 7 - 4	number line	100 square
	a three-digit number and tens	= 40 + 3	Count back	Dienes apparatus
	a three-digit number and hundreds groups of small numbers, e.g. 9 – 3 – 2	= 43	Count on	Bead bar
	a two-digit number from a multiple of 10, e.g. 50 - 38, 90 – 27, 68 – 35	Children will continue to use empty number lines with increasingly large numbers.	Find the difference	Numicon
		Count back from the largest number		
		56 - 23 = 33		
		-3 -20 or -20 -3		
		33 56 33 53 56		
		Count on or find the differencewhen the numbers involved are closetogether102 - 89 = 13		
		+1 +10 +2 89 90 100 102		

		Expanded columnar subtraction		
		89 - 57 is 80 + 9		
		- 50 + 7		
		30 + 2 = 32		
		Compact columnar subtraction (no exchange)		
		8 6		
		6.4		
		<u>64</u> 22		
	Practise mental methods with increasingly large numbers	Subtract numbers with up to 4 digits using efficient written column method	Partition	
Year 4	to aid fluency	with increasingly large numbers to aid fluency.	Place value	Dienes apparatus
	Subtract any pair of two-digit numbers, including crossing		Two digit,	
	the 10 and 100 boundary, e.g. 58 – 23	Estimate and use inverse operations to check answers	three digit	
	Count on and back in 10's from any number Subtract a near multiple of 10, e.g. 56 – 29	Solve subtraction of two-step problems in contexts, deciding which	Crossing	
	Understand subtraction as inverse of addition	operations and methods to use and why.	tens	
			boundary	
		Expand columnar subtraction 74-27 is 60 + 14	Inverse	
		• <u>20 + 7</u>	Exchange a	
		40 + 7 = 47	10 for ten	
		Compact columnar subtraction with decomposition (or Expanded method	ones	
		as in Year 3)		

		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Decimal	
Year 5	Subtract numbers with increasingly large numbers to aid fluency e.g. 12 462 - 2 300 = 10 162 Use rounding to check answers and determine, levels of accuracy Subtract a pair of two or three-digit multiples of 10, e.g. 80 - 30, 45 -36 and 450 – 360 Subtract a near multiple of 10 or 100 from any two-digit or three-digit number, e.g. 235 - 199 subtract pairs of decimal fractions each with ones and tenths, e.g. 5.7 - 2.5, 6.3 -4.8	Subtract whole numbers with more than 4 digits and increasingly large numbers using efficient column written methods with decomposition to aid fluency e.g. $754 - 86$ <u>6 14 14</u> <u>755 9</u> - <u>8 6</u> <u>6 6 8</u> With decimals in the context of money or measures e.g f21.31 - f18.06 <u>1 2</u> <u>7 16.311</u> <u>1 8 . 0 6</u> <u>8 . 2 5</u> Solve multi-step problems in contexts, deciding which operations and methods to use and why.	point Exchange a 10 for 10 ones, exchange a 100 for ten 10's	
	Calculate mentally with increasingly large numbers and more complex calculations. Use subtraction facts for	Practise subtraction for larger numbers, using the efficient written methods of columnar subtraction.		

Year 6	multiples of 10 to 1000 and decimal numbers with one decimal place, e.g. 650 - 2 = 930, 2 + 1.4 = 2.5		

EYFS Multiplication

Maths for young children should be meaningful. Where possible, concepts should be taught in the context for life.

Guidance / Models and Images	Key Vocabulary
The link between addition and multiplication should be introduced though doubling.	Lots of
If available, Numicon is used to visualise the repeated adding of the same number.	Groups of
These can then be drawn around or printed as a way of recording.	Times
Children begin with mostly pictorial representations:	Multiply
XX XX XX	Multiplied by
	Multiply of
How many groups of 2 are there?	
Real life contexts and use of practical equipment to <u>count in repeated groups of the same size:</u>	Once, twice, three times ten times

WIULIII	PLICATION			
	Mental strategies	Written methods	Vocabulary	Models, Images and resources
Year 1	Count on from and back to zero in ones, twos, fives or tens Make connections between arrays, number patterns, and counting in twos, fives and tens.	Solve simple one-step problems calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Understanding multiplication as an array: 2+2+2 Practical problem solving activities involving equal sets or groups. Through grouping small quantities, pupils should begin to understand multiplication; doubling numbers and quantities.	Sets Groups, pairs	100 square Number lines Number tracks Bead strings Numicon
Year 2	 Practise to become fluent in recall and use of multiplication facts for the 2, 5 and 10 multiplication tables, (connect the 10x table to place value, and the 5x table to the divisions on the clock face) Double any multiple of 5 up to 50, e.g. double 35 Find the total number of objects when they are organised into groups of 2, 5 or 10 Recognise odd and even numbers Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Introduce the symbol for multiplication 	Calculate mathematical statements and write them using the multiplication (x) and equals (=) signs Solve one-step x problems using materials, arrays, repeated addition and x facts, include problems in contexts. Understand multiplication as repeated addition There are 5 pencils in one packet. How many pencils in 4 packets? $5+5+5+5$ 4 lots of 5 or 5×4 On a number line: +5 $+5$ $+5$ $+5$ $+50$ 5 10 15 $20and on a bead bar:5 \times 3 = 5 + 5 + 5$	lots of groups of multiply symbol x times repeated addition times as big as wide as long	100 square Number lines Partly numbered lines Bead strings Numicon

		Understand x as an Array (of objects)		
		5 x 4 = 20		
		4 x 5 = 20 Begin to use other x tables and recall facts in written calculation Recognise and use the inverse relationship between multiplication and division in checking calculations.		
Year 3	Recall and use multiplication facts for the 4, 8 and 3 multiplication tables Practise mental recall of x tables to improve fluency. Use doubling to connect the 2, 4 and 8 x tables. Use x facts to derive related facts and write mathematical statements e.g. using 3 × 2 = 6 to derive 30 × 2 = 60	 Solve problems in context decide which operation to use and why, including missing number problems integer scaling problems erg double or treble 50p or 5x60cm correspondence problems in which m objects are connected to n objects erg finding all possibilities '3 hats and 4 coats, how many different outfits?' 	Multiply Partition Tens, ones, digit Empty number line	Partly marked number lines Empty number line Arrow card 100 square
	Develop efficient mental methods using commutativity e.g. 4 × 12 × 5 = 4 × 5 × 12 = 20 × 12 = 240)	Understand multiplication <u>represented as an Array</u>		Dienes apparatus Bead Strings
	Double any two-digit number, e.g. double 39 and any multiple of 5, 10 or 100, e.g. double 340, double 800,	○ ○ ○ ○ ○ ^{5 × 3 = 15}		
	Multiply one-digit or two-digit numbers by 10 or 100 and understand the effect e.g. 7×100 , 46×10 , 54×100	$\bigcirc \bigcirc 3 \times 5 = 15$		
		Develop reliable methods for TU X U progressing to efficient short multiplication		

		2 6		
		<u>X 4</u>		
		<u>104</u>		
Year 4	 Recall and practise multiplication facts for tables up to 12 × 12 to aid fluency. Use place value, known and derived facts to multiply mentally, including multiplying by 0 and 1 TU by 4 or 8, e.g. 26 × 4 by doubling) three numbers together numbers to 20 by a unit e.g. 17 × 3 numbers to 1000 by 10 and 100 (whole-numbe answers) e.g. 325 × 10, 42 × 100 Extend mental methods to HTU to derive facts e.g. 200 × 3 = 600 into 600 ÷ 3 = 200 Recognise and use factor pairs e.g. give the factor pair associated with a multiplication fact, ((if 2 x 3 = 6 then 6 has the factor pair 2 and 3) . 	Multiply using partitioning (recorded informally) $43 \times 6 =$ 43 $40 \times 6 = \underline{240}$ or $40 + 3$ $3 \times 6 = \underline{18}$ $40 + 3$ $240 + \underline{18} = \underline{258}$ $240 + 18 = 258$ Grid multiplicationIntroduce grid multiplication for TU x U and HTU X U 38×7 $\frac{\times}{7}$ 30 210 8 56 266 Develop fluency in efficient written method of short multiplication $5 - 6$ $3 - 0.4$ \underline{X} $\underline{4}$ $\underline{22.4}$ $27.3.6$ Write statements using the distributive law $39 \times 7 = 30 \times 7 + 9 \times 7$ and associative law $(2 \times 3) \times 4 = 2 \times (3 \times 4)$	Multiply Partition Place value Two digit, three digit	Arrow cards Dienes apparatus

		Solve two step problems with increasingly harder numbers and in which n objects are connected to m objects e.g. finding all possibilities '6 hats and 5 coats, how many different outfits?'	
Year 5	Multiply TU X U mentally using known facts for all multiplication tables to 12 x 12 numbers	Solve problems including understanding the meaning of the equals sign e.g. 34 x = 287 including scaling by simple fractions Use multiplication and division as inverses to support the introduction of	Partition Product
	Identify multiples and factors, including finding all factor pairs for numbers to 100, e.g. 30 has the factor pairs 1×30 , 2×15 , 3×10 and 5×6	ratio e.g. if there are 6 blue beads for every 10 red beads, calculate number of blue beads for 348 red bead	multiple Multiply Add
	Establish whether a number up to 100 is prime and recall prime numbers up to 19	Multiply up to 4 digits by a one- or two-digit number <u>Short multiplication</u> 3 8 2 4 0 6	total factor prime square and cube numbers.
	Recognise and use square and cube numbers, and notation for squared ² and cubed ³	X 7 x 8 266 19,248 5	
	Multiply by 25 or 50, e.g. 48 × 25, 32 × 50	Long multiplication for two-digit numbers	
	Multiply whole numbers decimals by 10, 100 and 1000 e.g. 4.3 × 10, 0.75 × 100	96	
	Multiply pairs of multiples of 10, e.g. 60 × 30, and a multiple of 100 by a single digit number, e.g. 900 × 8	$\frac{32}{192} \times \frac{192}{192} \text{this is 96 x 2}$	
	Find 50%, 25% or 10% of whole numbers or quantities, e.g. 25% of 20 kg, 10% of £80	$\frac{2880}{3072} \iff \frac{1}{100} \text{ this is 96 x 30} \text{ this is 96 x 32}$	

Year 6	Multiply two-digit decimals such as 0.8 × 7 and pairs of multiples of 10 and 100, e.g. 50 × 30, 600 × 20 Double decimals with units and tenths, e.g. double 7.6	Use efficient written method confidently, reducing the recording further and extending to larger numbers	Multiply Carry ten
	Find 10% or multiples of 10%, of whole numbers and quantities, e.g. 30% of 50 ml, 40% of £30, 70% of 200 g Scale up and down using known facts, e.g. given that three oranges cost 24p, find the cost of four oranges Identify numbers with an odd number of factors (square numbers), even numbers of factors and no factor pairs other than 1 and themselves (prime numbers) Explore the order of operations using brackets; e.g. 2 + $1 \times 3 = 5$ and $(2 + 1) \times 3 = 9$.	469 <u>x 32</u> 1938 <u>14070</u> 15008	

EYFS Division and Fractions

Maths for young children should be meaningful. Where possible, concepts should be taught in the context of real life.

Guidance/ Models and Images	Key Vocabulary
The ELG states that children solve problems, including doubling, halving and sharing.	Halve
Children need to see and hear representations of division as both grouping and sharing.	Share, share equally
Division can be introduced through halving.	One each, two each, three each
Children begin with mostly pictorial representations linked to real life contexts:	Group in pairs, threes
Grouping model	Tens
XX XX Mum has 6 socks. She grouped them into pairs – how	many pairs did she make? Equal groups of
	Divide
	Divided by
Sharing Model	Divided into
I have 10 sweets. I want to share them with my friend. How	many will we have each? Left, left over
Children have a go at recording the calculation that has been carried out?	

Fractions

Guidance / Models and Images	Key Vocabulary
Although not explicit in the Development Matters document, the sharing model is a useful way of introducing young children to fractions and calculating with fractions.	As division vocabulary Plus:
Setting the problems in real life context and solving them with <u>concrete apparatus</u> will support children's understanding.	Fraction Half
"I have got 5 bones to share between my two dogs. How many bones will they get	Halves Third thirds
each?"	
Children have a go at recording the calculation that has been carried out.	
$2\frac{1}{2} + 2\frac{1}{2} = 5$	

		DIVISION		
	Mental strategies	Written methods	Vocabulary	Models, Images and resources
Year 1	 Share objects into equal groups and count how many in each group and consider 'left over'. count on from and back to zero in ones, twos, fives or tens Make connections between arrays, number patterns, and counting in twos, fives and tens. Introduce the symbol for division ÷ 	Practical problem solving activities involving equal sets or groups. Begin to understand division through grouping and sharing and halving small quantitiesCan you cut the cake in half? How many pieces are there? 	Share Sharing grouping Equal groups Left over Half halving	Practical equipment Arrays bead strings
Year 2	 Practise to become fluent in recall and use of multiplication and division facts for the 2, 5 and 10 multiplication tables, Halve any multiple of 10 up to 100, e.g. halve 90 find half of even numbers to 40 Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot 	Calculate mathematical statements and write using division (÷) and equals (=) signs Solve one-step problems using materials, arrays, repeated subtraction and division facts, including problems in contexts. Understand as <u>sharing</u> equally 6 sweets are shared equally between 2 people. How many sweets does each one get?	Divide Share equally, one each, two each, Grouping equal groups, how many lots of, groups of	Practical equipment

		Understand as grouping (repeated subtraction).	
		There are 15 apples in a box.	
		How many bags of 5 apples can be filled?	
		How many groups of 5 can you make from 15?	
		Model repeated subtraction using a number line	
		24 ÷ 4 = 6	
		0 4 8 12 16 20 24	
		Begin to use other x tables and division facts to perform written calculation.	
		Relate to fractions and measures e.g. 40÷2 =20, 20 is a half of 40	
		Check calculations using the inverse relationship between x and \div	
	Halve any multiple of 10 up to 200, e.g. halve 170	Solve problems in context deciding which method to use and why, including	Divide
Year 3	Find unit fractions of numbers and quantities involving	missing number problems	Share
	halves, thirds, quarters, fifths and tenths ½ 1/3 ¼ 1/5 1/10	 measuring and money context correspondence problems in which m objects are connected to n 	Group
	Recall and use division facts for the 3, 4 and 8 x tables, use halving to derive division by 2, 4 and 8	objects erg 12 sweets shared equally between 4 children; 40 cakes shared equally between 8.	Remainder
			Left over
	Calculate and write mathematical statements for division using related x tables facts, including for TU ÷	Use practical methods and jottings, including remainders	Repeated
	U mentally	Sharing: If £20 is shared between 4 people, how much would each get?	subtraction

		or		
	Develop efficient mental methods using facts e.g. $6 \div 3$ = 2 and 2 = 6 ÷ 3 to derive related facts $60 \div 3 = 20$ and $20 = 60 \div 3$	<i>Grouping:</i> There are 20 children and they sit in tables of 4.How many tables will we need?		
	Divide TU and HTU numbers by U or 10, understand the effect of ÷10 e.g. 700 ÷ 10, 46 ÷ 2, 33÷3. Identify remainders when dividing by 2, 5 or 10	Repeated subtraction using a number line $24 \div 4 = 6$ 0 4 8 12 16 20 24 Develop reliable written methods for TU \div U progressing to efficient written <u>short division</u> e.g. 63 \div 3 $\frac{21}{3} = \frac{1}{3}$		
Year 4	Recall and practise division facts for x tables up to 12 × 12 use place value, known and derived facts to aid fluency. Practise and extend mental methods to three-digit numbers to derive facts e.g. 200 × 3 = 600 into 600 ÷ 3 = 200	Develop fluency in efficient written method of short division with exact answers when dividing by a one-digit number. (e.g. $11 \div 2$ expressed as 5 ½ or 5.5 not 5 remainder 1) Solve two step problems with increasingly harder numbers including correspondence questions such as three cakes shared equally between 10 children.	Inverse Divide 10 lots	
	Divide numbers to 1000 by 10 and then 100 (whole- number answers), e.g. 120 ÷ 10, 600 ÷ 100, 850 ÷ 10 Divide two-digit numbers by 4 or 8, e.g. 296 ÷ 8 Identify remainders when dividing by 1 to 12 Find halves of multiples of 10 , even numbers to 200 and three-digit multiples of 10 to 500 e.g. 760 ÷ 2	Introduce dividing using subtracting 10 lots of divisor and asking 'how many more left over?' 52 ÷ 4 I know that 10 lots of 4 are 40, there will be 12 left over which is another 3 lots of 4 so there are 13 lots of 4 in 52 Recorded informally 81 ÷ 3		

	Find unit and simple non-unit fractions of numbers and quantities erg 3/8 of 24	3)81		
Year 5	 Divide numbers mentally using known facts for all multiplication tables to 12 x 12 Divide whole numbers and decimals by 10, 100 or 1000, e.g. 25 ÷ 10, 673 ÷ 100, 74 ÷ 100 Find the whole number remainder after dividing a two-digit number by a single-digit number, e.g. 27 ÷ 4 = 6 R 3 Find fractions of whole numbers or quantities, e.g. 23 of 27, 45 of 70 kg Find 50%, 25% or 10% of whole numbers or quantities, e.g. 25% of 20 kg, 10% of £80 	Practise and extend efficient written methods applying X tables and related facts confidently for larger calculations Interpret answers by expressing in different ways including with remainders, as fractions, as decimals or by rounding e.g. $98 \div 4 = 24r2 =$ $24\frac{1}{2} = 24.5 \approx 25$ Divide up to ThHTU by U number using efficient <u>short division</u> Solve problems including scaling by simple fractions Use x and \div as inverses to support dividing by powers of 10 in scale drawings or in converting units e.g. km to m	Decimal point	
Year 6	 Divide TU by U number, e.g. 68 ÷ 4 divide by 25 or 50, e.g. 480 ÷ 25, 3200 ÷ 50 Divide two-digit decimals e.g. 4.8 ÷ 6 and find halves of decimals with units and tenths, e.g. half of 15.2 Divide multiples of 100 by a multiple of 10 or 100 (whole number answers), e.g. 600 ÷ 20, 800 ÷ 400, 2100 ÷ 300 Simplify fractions by cancelling and relating common factors to equivalent fractions. Find 10% or multiples of 10%, of whole numbers and quantities, e.g. 30% of 50 ml, 40% of £30, 70% of 200 g Scale up and down using known facts, e.g. given that six oranges cost 24p, find the cost of four oranges 	Divide numbers up to ThHTU by a TU whole number using efficient written method of long division, and interpret remainders as whole numbers, fractions, decimals fractions or by rounding as appropriate for the context		

24) 560	
$20 - \frac{480}{24 \times 20}$	
80	
$3 \frac{72}{12} 24 \times 3$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Answer: 23 R 8	
Long Division Method	
017	
017 25 425	
$ \begin{array}{c c} $	
25	
175	
175	
000	
<u>125</u> (Explanations)	
4)500	
$\underline{4} \qquad (4 \times 1 = 4)$	
10 (5 - 4 = 1)	
$\underline{8} (4 \times 2 = 8)$	
20 (10 - 8 = 2)	
20 (4 × 5 = 20)	
0 (20 - 20 = 0)	